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The objective of the present work is to examined the effects of plasma target electron-electron collisions on
H2

+ protons traversing it. Specifically, the target is deuterium in a plasma state with temperature Te=10 eV and
density n=1023 cm−3, and proton velocities are vp=vth, vp=2vth, and vp=3vth, where vth is the electron thermal
velocity of the target plasma. Proton interactions with plasma electrons are treated by means of the dielectric
formalism. The interactions among close protons through plasma electronic medium are called vicinage forces.
It is checked that these forces always screen the Coulomb explosions of the two fragmented protons from the
same H2

+ ion decreasing their relative distance. They also align the interproton vector along the motion
direction, and increase the energy loss of the two protons at early dwell times while for longer times the energy
loss tends to the value of two isolated protons. Nevertheless, vicinage forces and effects are modified by the
target electron collisions. These collisions enhance the calculated self-stopping and vicinage forces over the
collisionless results. Regarding proton correlated motion, when these collisions are included, the interproton
vector along the motion direction overaligns at slower proton velocities �vp=vth� and misaligns for faster ones
�vp=2vth, vp=3vth�. They also contribute to a great extend to increase the energy loss of the fragmented H2

+

ion. This later effect is more significant in reducing projectile velocity.

DOI: 10.1103/PhysRevE.73.026401 PACS number�s�: 52.40.Mj, 52.65.Yy, 52.20.Fs, 52.25.Mq

I. INTRODUCTION

In recent years, it has been demonstrated that subpicosec-
ond high intensity lasers can generate short bunches of dense
ion beams �1–6�. When the density of an atomic beam in-
creases the ions get closer and new interactions take place
between them. But these interactions can be also observed in
low density molecular ion beams. These ions dissociate
when entering the target, so that the resulting charged frag-
ments are very close to each other and their motion is also
highly correlated �7–11�. The energy loss of molecular
beams being higher than the one of atomic beams, they have
also been proposed as drivers for inertial confinement fusion
�12,13�. Regardless of the origin of the closeness of the
charges, the interaction force between them when they move
through an electronic medium �plasma� is called vicinage
forces �14�. These vicinage forces change the stopping and
give rise to the correlated stopping.

It is known that target electron-electron collisions play an
important role in the noncorrelated ion stopping �15�, so it is
expected that these collisions also play an important role in
the ion beam collective stopping. The influence of these elec-
tron collisions in correlated ion stopping will be considered
through the dielectric formalism. The dielectric formalism
has become one of the most used methods to describe the
interaction of swift ions and other charged particles with
matter. The use of this formalism to study the energy loss of
charged particles was introduced by Fermi �16�. Subsequent
developments made it possible to extend the dielectric for-
malism to provide a more comprehensive description of the
stopping of ions in matter �17,18�. Large number of calcula-
tions of electronic stopping forces of ions and electrons in
plasmas have been carried out using the classical random
phase approximation �RPA� in the dielectric formalism �see
Ref. �19� for a complete list�.

However, the RPA predicts an infinite lifetime for
electron-electron collisions, whereas it is well known that in
real materials these excitations are damped. Although it
seems to be a straightforward substitution, the replacement
of � by �+ i� in the RPA dielectric functions where � rep-
resents the collision damping, is erroneous, as it does not
conserve the local particle number. Mermin �20� derived an
expression for the dielectric function taking account of the
finite lifetime of the collisions and also preserving the local
particle number.

Dielectric formalism has been successfully applied to the
interaction of protons with plasmas �21� and molecular pro-
tons beams with solid targets �22�. In this article protons will
also be used, as they are the most simple ions upon which
one can examine these collision effects. The final purpose of
this work is to include our theoretical model in our computer
code TAMIM �transport of atomic and molecular ions in mat-
ter�, formerly known as MBC-ITFIP �23�. There is no doubt
that a user friendly computer code can be of great help for
the plasma scientific community.

In Sec. II the dielectric formalism used to study the
plasma electron-electron collisions is detailed. The influ-
ences of these collisions on proton electronic self-stopping
and vicinage forces are shown in Sec. III. Then the effects on
the correlated motion of the protons are analyzed in Sec. IV.

II. DIELECTRIC FUNCTION

In the dielectric formalism, the target is characterized by
its dielectric function ��k ,��, which contains relevant infor-
mation about its response to electronic excitations with mo-
mentum k and energy �. The longitudinal dielectric function
of a classical electron plasma in the RPA is �24�
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�RPA�k,�� = 1 +
kD

2

k2 �W��� + Y���� , �1�

with

W��� = 1 − �2� exp�− �2/2��
0

�/�2

exp�− x2�dx �2�

and

Y��� =��

2
� exp�− �2/2� , �3�

where �=� / �kvth� with vth=�kBT the electron thermal veloc-
ity, kD=�p /vth the inverse Debye length, and �p=�4�n the
plasma frequency in atomic units �a.u.�.

As mentioned in the Introduction, the RPA predicts an
infinite life for electron-electron collisions, whereas it is well
known that in real materials these excitations are damped.
So, it is straightforward substituting � by �+ i� in the RPA
dielectric function, obtaining the relaxation time approxima-
tion �RTA�, where � represents the collision frequency. This
method is erroneous as it does not conserve the local particle
number and has not Drude behavior at long wavelengths �k
→0�

�D�k,�� = 1 −
�p

2

��� + i��
. �4�

The Mermin dielectric function �20� is derived using an ex-
pansion of the local equilibrium distribution function to con-
serve the local particle number

�M�k,�� = 1 +
�� + i����RPA�k,� + i�� − 1�

� + i���RPA�k,� + i�� − 1�/��RPA�k,0� − 1�
,

�5�

where �RPA�k ,�+ i�� is the RPA dielectric function in the
RTA case. It is easy to see that when �→0, the Mermin
dielectric function reproduces the RPA function.

For ion stopping considerations, it is worth defining the
energy loss function �ELF�

ELF � Im� − 1

�x�k,��	 , �6�

where �x�k ,�� represents any dielectric function stated be-
fore. Figure 1 shows Drude, RTA, and Mermin ELFs depen-
dence with � /�p when k→0, for a Te=10 eV and n
=1023 cm−3 deuterium plasma. For this plasma, the collision
frequency, �=0.225�p, is obtained from Spitzer �25�. Mer-
min energy loss function reproduces quite well Drude energy
loss function but it is not the case for the RTA one. It means
that the collisions are not included correctly in the RTA di-
electric function, and so Mermin result will be chosen as the
most appropriate one for calculating next self-stopping and
vicinage forces.

III. SELF-STOPPING AND VICINAGE
ELECTRONIC FORCES

The electronic ion stopping can be divided into the con-
tribution due to itself and the contribution due to its partners.
The first one is called self-stopping electronic force and the
second one vicinage electronic force. Following the dielec-
tric formalism and using atomic units, the induced force pro-
duced by a pointlike charge Zp1, moving at velocity v inside
a uniform electron gas, on a neighbor charge Zp2 is �26�

Fz�z,�� =
2Zp1Zp2

�vp1
2 �

0

� dk

k
�

0

kv

d� � J0���k2 − �2/vp1
2 �

� 
sin��z/vp1�Re� 1

�x�k,��
− 1�

+ cos��z/vp1�Im� 1

�x�k,��
− 1� , �7�

F��z,�� =
2Zp1Zp2

�vp1
�

0

� dk

k
�

0

kv

d� J1���k2 − �2/vp1
2 �

��k2 − �2/vp1
2 
cos��z/vp1�Re� 1

�x�k,��
− 1�

− sin��z/vp1�Im� 1

�x�k,��
− 1� , �8�

where z and � are the coordinates parallel and perpendicular
of the neighbor projectile from the projectile that generates
the potential in the reference frame of the motion of the last
one. J0�x� and J1�x� are the zeroth and the first order Bessel
functions. It is worthwhile to mention that the induced or
vicinage forces in Eqs. �7� and �8� do not include the Cou-
lomb force and only depend on the target through its dielec-
tric function �x�k ,��. Figure 2 shows the Fz�z ,�� as a func-
tion of z that a proton Z1=1 with velocity v=2.5vth produces

FIG. 1. �Color online� Drude, RTA, and Mermin energy loss
functions dependence with � /�p when k→0, for a Te=10 eV and
n=1023 cm−3 deuterium plasma. The collision frequency is �
=0.225�p.
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on another proton located at �z ,�=0�. The RPA case is com-
pared with the RTA and Mermin cases when �=0.225�p. The
modulus of the force �Fz�z ,��� increases when collisions are
considered in RTA and Mermin calculations.

Assigning z=�=0 and Zp1=Zp2 to Eqs. �7� and �8� results
F�=0, and Fz yields the self-stopping particle force Fs. The
variation of the projectile kinetic energy is dE=Fsvp1dt so
the electronic stopping Sp defined as the energy loss per unit
path length, becomes

Sp =
− dE

vp1 dt
= − Fs,z�z = 0,� = 0� . �9�

Then the well-known electronic stopping formula for one
projectile is recovered

Sp =
2Zp1

2

�vp1
2 �

0

� dk

k
�

0

kv

d� � Im� − 1

�x�k,��� . �10�

A cutoff, kmax= �vp
2 +2vth

2 � /Zp1
2, is introduced to avoid diver-

gence of the k integral in Eqs. �7�, �8�, and �10�. This diver-
gence is caused by inadequacy of the classical treatment of
the short-range interactions between the projectile and the
plasma electrons �24�.

Substituting �x�k ,�� by the corresponding RPA dielectric
function, the self-stopping force for the random phase ap-
proximation is obtained. Figure 3 represents the self-
stopping proton force for the RPA case as a function of ion
velocity. It is compared with Bethe result. To examine the
effects of the target electron-electron collisions in the self-
stopping ion force, the collision frequency � is included in
the dielectric function. RTA case results from changing the
�RPA�k ,�� to �RPA�k ,�+ i�� in Eq. �10�. For this target
plasma, � is equal to 0.225�p. It is seen that this new result
is higher than RPA one, meaning that target electron-electron
collisions increases self-stopping ion force. Mermin calcula-
tion is also included in Fig. 3, showing that this case is
higher than the RPA case and it is even higher than the RTA

one. The increase due to these collisions in the self-stopping
force is more significant at its maximum value.

IV. RESULTS

This section analyzes the effects of considering plasma
target electron collisions in the correlated motion of protons
from fragmented H2

+ ions. For this purpose, a numerical
code named TAMIM has been developed. This code describes
the evolution of the protons inside the plasma by means of a
3D molecular dynamics �MD� simulation, i.e., the trajectory
of each proton is followed by integrating the Newton equa-
tions of motion with a finite difference algorithm. The forces
acting on each proton at each timestep are: the electronic
self-stopping force, the reciprocal vicinage forces and the
Coulomb repulsion. The interest in the study of the H2

+ ions
is that these ions are composed of two protons, therefore
when they dissociate, they can be used to study the corre-
lated motion of very close protons. But the same calculations
can be made for more complex molecular ions.

The H2
+ ion will lose its electron just entering the target

and dissociates into two protons Zp1=Zp2=1 and mp=1 in
proton units �p.u.�, separated by an initial distance r0=1.08
�10−8 cm �22�. This yields two protons that move in close
proximity, interacting between them and with the target elec-
trons. The target is considered to be deuterium, Zn=1 and
mn=2 in p.u., in a plasma state characterized by its density
n=1023 cm−3 and its temperature T=10 eV. H2

+ velocities
incident on plasma target are similar to electron thermal ve-
locity vp�vth.

The main difference on the transport between two corre-
lated or isolated protons is due to Coulomb and vicinage
forces. So, it is interesting to analyze how target electron
collisions influence two fundamental quantities for calculat-
ing these forces: the interproton distance r and the azimuthal
angle between the interproton vector and the motion direc-

FIG. 2. �Color online� Fz�z ,�� as a function of z at �=0 that a
proton Z1=1 with velocity v=2.5vth produces on another proton
located at �z ,�=0�. RPA case is compared with the RTA and Mer-
min cases when �=0.225�p.

FIG. 3. �Color online� RPA self-stopping ion force as a function
of ion velocity in a Te=10 eV and n=1023 cm−3 plasma compared
with the Bethe formula. Self-stopping RTA and Mermin forces are
compared with the RPA case using collision frequency �
=0.225�p.
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tion 	. It is appropriate to introduce the logarithm of the
dimensionless dwell time �t� 
=log10�t / tc�, where tc is the
characteristic Coulomb explosion time of the two protons
fragmented from a H2

+ ion. The characteristic Coulomb ex-
plosion time is obtained as tc=r0 /uc=1.47 fs, where uc is the
asymptotic relative radial velocity of the protons after their
bare Coulomb explosion.

Figure 4 displays the evolution of the interproton distance
r as a function of the logarithm of dwell time 
 during the
Coulomb explosion of a H2

+ ion with the initial angle 	0
=60° impacting the plasma target at different velocities �a�
vp=vth, �b� vp=2vth, and �c� vp=3vth. Each graph represents
the r evolution taking into account only bare Coulomb force,
Coulomb and vicinage forces without considering target
electron collisions, and Coulomb and vicinage forces consid-
ering them. It is seen that vicinage forces always delay Cou-
lomb explosions. This screening is consequence of the asym-
metry of the vicinages forces. F� is usually negative �see Fig.
2� so it tries to join the two protons in � direction. Fz is

usually negative at small positive z and positive at small
negative z �see Fig. 2� so it also approaches the two protons
in z direction. It results in decreasing the interproton distance
in both � and z directions and retarding the Coulomb explo-
sion. This is more significant in the late dwell times when the
two protons are quite separated out and Coulomb force is
smaller than vicinage forces. Also, it can be noticed that
Coulomb screening is slightly more relevant at lower speeds
meaning that the averaged vicinage force along proton tra-
jectory is more important at lower velocities. Not many
changes result when target electron collisions are included in
the calculations. Small differences are only noticed for the
slowest velocity vp=vth. Now the Coulomb screening pro-
duced by the vicinage forces is smaller than when these col-
lisions are not included. For faster velocities discrepancies
between considering or not considering the collisions in
computer simulations are not relevant.

Vicinage forces tend to align the interproton vector in the
motion direction due to its asymmetry �27�. So next, the
influence of target electron collisions in the interproton azi-
muthal angle 	 will be examined. Figure 5 represents the 	
evolution as a function of the logarithm of dwell time 
 when
the initial azimuthal angle is 	0=60° for the same conditions

FIG. 4. �Color online� Evolution of the adimensional interproton
distance rkD as a function of the logarithm of dwell time 
 during
the Coulomb explosion of a H2

+ ion with the initial angle 	0=60°
traversing the plasma with different velocities �a� vp=vth, �b� vp

=2vth, and �c� vp=3vth. Each graph represents this evolution taking
into account only bare Coulomb force, Coulomb and vicinage
forces, and Coulomb force and vicinage forces considering target
electron collisions.

FIG. 5. �Color online� Evolution of 	 as a function of the loga-
rithm of dwell time 
 when the initial azimuthal angle is 	0=60°;
for the same conditions as in Fig. 4.
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as in Fig. 4. When only bare Coulomb forces are considered
the azimuthal angle does not vary as expected, but when
vicinage forces are added to calculations this angle decreases
to indicate that the interproton vector aligns along motion
direction. This also results from the asymmetry of the vici-
nage forces. In this case, angle decreasing means that the
alignment power of the F� force is higher than the Fz one
along protons travel. This effect is not so significant at low
velocities as the ratio between F� and Fz forces is smaller.
When target electron collisions are included in the calcula-
tions the interproton overaligns for slowest projectile veloc-
ity vp=vth, while it misaligns for faster velocities. This later
misalignment is more relevant for the proton velocity vp
=2vth.

Finally target electron collisions effects on H2
+ energy

loss are analyzed. If the two fragmented protons are consid-
ered as one system, the H2

+ electronic stopping can be ob-
tained theoretically as the sum of all electronic forces in the
−z direction

SpH2
+ = 2SpH+ − Fz�z,�� − Fz�− z,�� , �11�

where SpH+ is the electronic stopping of one isolated proton
calculated from Eq. �10�. SpH2

+ depends on time through the
variation of the coordinates z and �, at the same time that
these coordinates vary due to the Coulomb and vicinage
forces. H2

+ electronic stopping ratio R2 can be defined to
compare the electronic stopping at different projectile inci-
dent velocities

R2 =
SpH2

+

2SpH+
= 1 −

Fz�z,�� + Fz�− z,��
2SpH+

. �12�

But this ratio can also be calculated directly with our com-
puter code as the ratio between the energy loss of the frag-
mented H2

+ ion considering vicinage forces and the energy
loss of the fragmented H2

+ ion without considering vicinage
forces, i.e.,

R2 =
�EH2

+
*

�EH2
+
, �13�

where �EH2
+

* and �EH2
+ refers to H2

+ energy loss with and
without vicinage force, respectively.

Figure 6 shows the H2
+ electronic stopping ratio as a

function of the logarithm of dwell time 
 at different incident
ion velocities. It can be seen that at longer dwell times the
stopping ratio tends to 1 while at early times the ratio is
larger than 1. This is because the two protons in the early
stages are very close and they feel greater vicinage forces
while in the last stages the protons are completely separated
out and travel as isolated ions. When target electron colli-
sions are included in calculations, they contribute to a great
extend to increase the energy loss of the fragmented H2

+ ion
at all velocities. The stopping ratio increment is more notice-
able at early dwell times while for longer times the stopping
ratio tend to the same value than when the collisions are not
included. This increment is more prominent for lower veloci-
ties due to vicinage forces in z direction, i.e., the sum Fz�z�
+Fz�−z� is more negative for lower velocities.

V. CONCLUSIONS

In this work, the effects of target electron-electron colli-
sions in the correlated motion of the fragmented H2

+ protons
has been deeply examined. Specifically the target is deute-
rium in a plasma state with temperature Te=10 eV and den-
sity n=1023 cm−3. The correlated motion of the two protons
is due to Coulomb and vicinage forces between them. It has
been checked that vicinage forces always screen out Cou-
lomb explosions of the fragmented H2

+ protons. This screen-
ing is consequence of the asymmetry of the vicinage forces
obtained in Sec. III that approaches the two protons. It re-
sults in decreasing the interproton distance r and delaying
Coulomb explosion. Vicinage forces also tend to align the
interproton vector in the motion direction. Finally it has been
seen that they increase the correlated H2

+ stopping at early
times decreasing to the stopping of two isolated protons
value at longer dwell times.

Nevertheless these vicinage effects can be modified by
target electron-electron collisions. These collisions can en-
hance the calculated self-stopping force over the collisionless
results. For protons with velocities v=2.5vth, the self-
stopping force is increased by 11% and the modulus of the
proton vicinage force also increases by 15% �at �=0� for this

FIG. 6. �Color online� H2
+ electronic stopping ratio R2 as a

function of the logarithm of dwell time 
 when the initial azimuthal
angle is 	0=60°; for the same conditions as in Fig. 4.
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particular plasma target. Concerning the correlated motion of
the two protons, the target electron-electron collisions do not
cause many changes in the evolution of the interproton dis-
tance, only small differences are seen for the slowest velocity
vp=vth. But these collisions make that the interproton vector
angle, 	, with the motion direction overaligns for slower
proton velocities while misaligns for faster ones. Finally
these collisions contribute to a great extend to increase the
energy loss of the fragmented H2

+ ion at all velocities. The
energy loss increment is more noticeable at early dwell times

while for longer times the energy loss tend to the same value
than when target electron collisions are not included. The
main conclusion of this work is that correlated motion of
charged particles cannot be studied realistically without con-
sidering the effects of target electron-electron collisions.
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